{"id":1056,"date":"2024-07-18T16:20:44","date_gmt":"2024-07-18T14:20:44","guid":{"rendered":"https:\/\/mu-imagine.com\/?p=1056"},"modified":"2024-07-18T16:22:09","modified_gmt":"2024-07-18T14:22:09","slug":"studying-brain-function-with-super-resolution-microscopy","status":"publish","type":"post","link":"https:\/\/mu-imagine.com\/studying-brain-function-with-super-resolution-microscopy\/","title":{"rendered":"Studying brain function with Super-Resolution Microscopy"},"content":{"rendered":"\n[et_pb_section fb_built=”1″ _builder_version=”4.20.1″ _module_preset=”default” use_background_color_gradient=”on” background_color_gradient_direction=”125deg” background_color_gradient_stops=”#c5f5ff 44%|#ffffff 100%” custom_margin=”0px||-27px||false|false” custom_margin_tablet=”|||0px|false|false” custom_margin_phone=”|||0px|false|false” custom_margin_last_edited=”on|phone” custom_padding=”0px||||false|false” locked=”off” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_row _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”4_4″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_button button_url=”@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF9saW5rX3VybF9wYWdlIiwic2V0dGluZ3MiOnsicG9zdF9pZCI6IjE4NSJ9fQ==@” button_text=”Back to news page” button_alignment=”left” disabled_on=”off|off|off” _builder_version=”4.20.1″ _dynamic_attributes=”button_url” _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#000000″ button_bg_color=”#50D3E1″ button_border_color=”#50D3E1″ button_border_radius=”100px” button_font=”Montserrat|700|||||||” button_icon=”J||divi||400″ button_icon_placement=”left” custom_margin=”35px||||false|false” global_colors_info=”{}” theme_builder_area=”post_content”][\/et_pb_button][et_pb_text _builder_version=”4.20.1″ _dynamic_attributes=”content” _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”22px” text_line_height=”1.5em” text_font_size_tablet=”20px” text_font_size_phone=”18px” text_font_size_last_edited=”on|phone” global_colors_info=”{}” theme_builder_area=”post_content”]@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF90aXRsZSIsInNldHRpbmdzIjp7ImJlZm9yZSI6IiIsImFmdGVyIjoiIn19@[\/et_pb_text][et_pb_text _builder_version=”4.20.1″ _dynamic_attributes=”content” _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#02486A” text_font_size=”15px” text_line_height=”1.5em” text_font_size_tablet=”20px” text_font_size_phone=”18px” text_font_size_last_edited=”on|phone” global_colors_info=”{}” theme_builder_area=”post_content”]@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF9kYXRlIiwic2V0dGluZ3MiOnsiYmVmb3JlIjoicHVibGlzaGVkIG9uICIsImFmdGVyIjoiIiwiZGF0ZV9mb3JtYXQiOiJtLmQuWSIsImN1c3RvbV9kYXRlX2Zvcm1hdCI6IiJ9fQ==@[\/et_pb_text][\/et_pb_column][\/et_pb_row][et_pb_row column_structure=”2_5,3_5″ make_equal=”on” _builder_version=”4.23.1″ _module_preset=”default” custom_css_main_element=”align-items: center;” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”2_5″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_text _builder_version=”4.23.1″ _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”15px” text_line_height=”1.6em” custom_margin=”||||false|false” custom_margin_tablet=”0px||||false|false” custom_margin_phone=”0px||||false|false” custom_margin_last_edited=”on|phone” hover_enabled=”0″ global_colors_info=”{}” theme_builder_area=”post_content” sticky_enabled=”0″]

Advancing synaptic imaging: the Blanpied Lab\u2019s approach<\/strong><\/p>\n

Understanding brain function, particularly at the level of neuronal synapses, is a complex and crucial endeavor in neuroscience.
Neuronal synapses are where many neurological processes occur, including signal transmission and plasticity, which underlie learning and memory. Imaging these tiny structures presents significant challenges due to their minuscule size, often requiring advanced microscopy techniques for adequate resolution.<\/p>[\/et_pb_text][\/et_pb_column][et_pb_column type=”3_5″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_image src=”https:\/\/mu-imagine.com\/wp-content\/uploads\/2024\/07\/Img-blog-0724.png” alt=”Example of Mirao 52e implementation on a super-resolution microscope” title_text=”Img blog 0724″ _builder_version=”4.23.1″ _module_preset=”default” max_width_tablet=”75%” max_width_phone=”100%” max_width_last_edited=”on|phone” hover_enabled=”0″ border_radii=”on|10px|10px|10px|10px” global_colors_info=”{}” theme_builder_area=”post_content” sticky_enabled=”0″][\/et_pb_image][\/et_pb_column][\/et_pb_row][et_pb_row _builder_version=”4.20.1″ _module_preset=”default” custom_margin=”-35px||||false|false” custom_margin_tablet=”-43px||||false|false” custom_margin_phone=”-42px||||false|false” custom_margin_last_edited=”on|tablet” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_column type=”4_4″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}” theme_builder_area=”post_content”][et_pb_text _builder_version=”4.23.1″ _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”15px” text_line_height=”1.6em” hover_enabled=”0″ global_colors_info=”{}” theme_builder_area=”post_content” sticky_enabled=”0″]

The lab of Thomas Blanpied at the University of Maryland School of Medicine is at the forefront of this research. They employ a variety of cutting-edge microscopy methods to explore the intricacies of synaptic active zones and the functions of the postsynaptic density.
In particular, they are using PALM (Photoactivated Localization Microscopy) and STORM (Stochastic Optical Reconstruction Microscopy) single-molecule super-resolution microscopy techniques to overcome the diffraction limit of conventional light microscopy and visualize neuronal structures at the nanometer scale.
Both techniques rely on the precise localization of single molecules that are activated and deactivated stochastically. By compiling the positions of these molecules, researchers can construct a super-resolved image.<\/p>\n

\u00a0<\/span><\/p>\n

Improving image resolution: the role of Adaptive Optics in synaptic imaging<\/strong><\/p>\n

The localization precision of molecule positions in super-resolution microscopy is highly dependent on the number of detected photons and the quality of single-molecule spots, also known as the point spread function (PSF). In neuronal samples, differences in refractive indices between different cellular components can cause optical aberrations. These aberrations distort the PSF, leading to reduced localization precision and image resolution.
To overcome aberrations and restore image resolution, scientists in the Blanpied lab use an adaptive optics device called MicAO<\/a> 3DSR. This device features a deformable mirror capable of compensating for aberrations, correcting the PSF, and thereby improving the resolution of super-resolved images.<\/p>\n

\u00a0<\/span><\/p>\n

How to use advanced imaging techniques, an example: <\/strong><\/p>\n

An example of such imaging was recently published in the Journal of Neuroscience: \u201cDistinct SAP102 and PSD-95 Nano-Organization Defines Multiple Types of Synaptic Scaffold Protein Domains at Single Synapses\u201d<\/a>. This study investigates the nano-organization of two key synaptic scaffold proteins, SAP102 and PSD-95, within individual synapses.
By employing super-resolution microscopy enhanced with adaptive optics, the researchers were able to:<\/p>\n