{"id":709,"date":"2024-01-19T13:23:42","date_gmt":"2024-01-19T12:23:42","guid":{"rendered":"https:\/\/mu-imagine.com\/?p=709"},"modified":"2024-05-06T11:29:29","modified_gmt":"2024-05-06T09:29:29","slug":"boosting-neuroimaging-the-synergy-of-adaptive-optics-and-light-sheet-fluorescence-microscopy","status":"publish","type":"post","link":"https:\/\/mu-imagine.com\/boosting-neuroimaging-the-synergy-of-adaptive-optics-and-light-sheet-fluorescence-microscopy\/","title":{"rendered":"Boosting Neuroimaging: The Synergy of Adaptive Optics and Light-Sheet Fluorescence Microscopy"},"content":{"rendered":"\n[et_pb_section fb_built=”1″ _builder_version=”4.20.1″ _module_preset=”default” use_background_color_gradient=”on” background_color_gradient_direction=”125deg” background_color_gradient_stops=”#c5f5ff 44%|#ffffff 100%” custom_margin=”0px||-27px||false|false” custom_margin_tablet=”|||0px|false|false” custom_margin_phone=”|||0px|false|false” custom_margin_last_edited=”on|phone” custom_padding=”0px||||false|false” locked=”off” global_colors_info=”{}”][et_pb_row _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_button button_url=”@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF9saW5rX3VybF9wYWdlIiwic2V0dGluZ3MiOnsicG9zdF9pZCI6IjE4NSJ9fQ==@” button_text=”Back to news page” button_alignment=”left” disabled_on=”off|off|off” _builder_version=”4.20.1″ _dynamic_attributes=”button_url” _module_preset=”default” custom_button=”on” button_text_size=”16px” button_text_color=”#000000″ button_bg_color=”#50D3E1″ button_border_color=”#50D3E1″ button_border_radius=”100px” button_font=”Montserrat|700|||||||” button_icon=”J||divi||400″ button_icon_placement=”left” custom_margin=”35px||||false|false” global_colors_info=”{}”][\/et_pb_button][et_pb_text _builder_version=”4.20.1″ _dynamic_attributes=”content” _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”22px” text_line_height=”1.5em” text_font_size_tablet=”20px” text_font_size_phone=”18px” text_font_size_last_edited=”on|phone” global_colors_info=”{}”]@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF90aXRsZSIsInNldHRpbmdzIjp7ImJlZm9yZSI6IiIsImFmdGVyIjoiIn19@[\/et_pb_text][et_pb_text _builder_version=”4.20.1″ _dynamic_attributes=”content” _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#02486A” text_font_size=”15px” text_line_height=”1.5em” text_font_size_tablet=”20px” text_font_size_phone=”18px” text_font_size_last_edited=”on|phone” global_colors_info=”{}”]@ET-DC@eyJkeW5hbWljIjp0cnVlLCJjb250ZW50IjoicG9zdF9kYXRlIiwic2V0dGluZ3MiOnsiYmVmb3JlIjoicHVibGlzaGVkIG9uICIsImFmdGVyIjoiIiwiZGF0ZV9mb3JtYXQiOiJtLmQuWSIsImN1c3RvbV9kYXRlX2Zvcm1hdCI6IiJ9fQ==@[\/et_pb_text][\/et_pb_column][\/et_pb_row][et_pb_row column_structure=”3_5,2_5″ _builder_version=”4.23.1″ _module_preset=”default” hover_enabled=”0″ global_colors_info=”{}” make_equal=”on” custom_css_main_element=”align-items: center;” sticky_enabled=”0″][et_pb_column type=”3_5″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_image src=”https:\/\/mu-imagine.com\/wp-content\/uploads\/2024\/04\/Neuroimaging_news.png” title_text=”neuroimaging_news” _builder_version=”4.23.1″ _module_preset=”default” max_width_tablet=”75%” max_width_phone=”100%” max_width_last_edited=”on|phone” hover_enabled=”0″ border_radii=”on|10px|10px|10px|10px” global_colors_info=”{}” alt=”Images of neurons inside Drosophila brain taken with and without adaptive optics” sticky_enabled=”0″][\/et_pb_image][\/et_pb_column][et_pb_column type=”2_5″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_text _builder_version=”4.23.1″ _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”15px” text_line_height=”1.6em” custom_margin=”||||false|false” custom_margin_tablet=”0px||||false|false” custom_margin_phone=”0px||||false|false” custom_margin_last_edited=”on|phone” hover_enabled=”0″ global_colors_info=”{}” sticky_enabled=”0″]
As a new step towards better imaging solutions incorporating adaptive optics (AO), we recently demonstrated, in collaboration with several research groups from CNRS, a fast aberration correction method, designed as an AO module compatible with light-sheet fluorescence microscopy (LSFM) for enhanced neuroimaging of live samples.<\/p>[\/et_pb_text][\/et_pb_column][\/et_pb_row][et_pb_row _builder_version=”4.20.1″ _module_preset=”default” custom_margin=”-35px||||false|false” custom_margin_tablet=”-43px||||false|false” custom_margin_phone=”-42px||||false|false” custom_margin_last_edited=”on|tablet” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.20.1″ _module_preset=”default” global_colors_info=”{}”][et_pb_text _builder_version=”4.23.1″ _module_preset=”default” text_font=”Montserrat||||||||” text_text_color=”#000000″ text_font_size=”15px” text_line_height=”1.6em” global_colors_info=”{}”]
Focusing on the Neuroscientific Challenge<\/strong><\/p>\n In the dynamic realm of neuroscience, understanding the brain\u2019s functional organization and connectivity poses a great challenge. <\/p>\n Overcoming Challenges and Pushing Boundaries thanks to AO-LSFM combination<\/strong><\/p>\n In response to this limitation, adaptive optics (AO) emerges as a game-changing technology when integrated into LSFM setups to counteract optical aberrations. <\/p>\n Next steps and Future Frontiers<\/strong><\/p>\n The instrumental approach designed by the team offers a compact and versatile prototype for integration into various LSFM setups. Ongoing testing on different configurations reveals the potential for a commercial AO add-on.
Indeed, to be able to unveil mechanisms behind neurodegenerative diseases like Alzheimer’s and Parkinson’s, demands advanced imaging techniques allowing to map the brain activity with high spatio-temporal resolution at large depths.
Such requirements led to the development of new 3D imaging strategies such as light-sheet fluorescence microscopy (LSFM).
Even though the technique is perfectly suited for live imaging (thanks to great spatio-temporal capabilities and minimal phototoxicity), LSFM still encounters limited imaging depth capability due to strong optical aberrations compromising signal-to-background ratio (SBR).<\/p>\n
Recently, our research consortium highlighted the transformative impact of AO on LSFM, employing direct wavefront sensing with an extended-scene Shack-Hartmann (ESSH) wavefront sensor (link here<\/a>). As a proof of concept, we were able to show significant improvement of image quality in-depth with structural imaging of ex-vivo Drosophila brain.
In this new study<\/a>, an enhanced AO-LSFM set-up which does not require any guide star and is compatible with calcium neuroimaging is demonstrated.
Using dual labelling in the Drosophila brain, a strongly scattering sample :
– Structural and calcium signal images down to 80 and 40 \u03bcm were reported respectively, with an increased contrast of at least a factor of 2.
– Fast AO correction at a speed up to 10 Hz was demonstrated, positioning the approach as a game-changer in 3D imaging and dynamic process observation in depth in scattering samples.<\/p>\n
Researchers now delve into new challenges such as light-sheet thickness and excitation optimization, showcasing the continuous evolution of AO-LSFM technology for even greater image quality and sensitivity.
In conclusion, with its potential to unlock the mysteries of the brain, AO-LSFM is one of the technologies standing at the forefront of neuroimaging innovation. To address current & future challenges in this promising field, we are dedicated to developing tailored adaptive optics solutions to propel research forward.<\/p>\n